Reactive flux and folding pathways in network models of coarse-grained protein dynamics.

نویسندگان

  • Alexander Berezhkovskii
  • Gerhard Hummer
  • Attila Szabo
چکیده

The reactive flux between folded and unfolded states of a two-state protein, whose coarse-grained dynamics is described by a master equation, is expressed in terms of the commitment or splitting probabilities of the microstates in the bottleneck region. This allows one to determine how much each transition through a dividing surface contributes to the reactive flux. By repeating the analysis for a series of dividing surfaces or, alternatively, by partitioning the reactive flux into contributions of unidirectional pathways that connect reactants and products, insight can be gained into the mechanism of protein folding. Our results for the flux in a network with complex connectivity, obtained using the discrete counterpart of Kramers' theory of activated rate processes, show that the number of reactive transitions is typically much smaller than the total number of transitions that cross a dividing surface at equilibrium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From coarse-grained to atomic-level characterization of protein dynamics: transition state for the folding of B domain of protein A.

Atomic-level molecular dynamics simulations are widely used for the characterization of the structural dynamics of proteins; however, they are limited to shorter time scales than the duration of most of the relevant biological processes. Properly designed coarse-grained models that trade atomic resolution for efficient sampling allow access to much longer time-scales. In-depth understanding of ...

متن کامل

A critical comparison of coarse-grained structure-based approaches and atomic models of protein folding.

Structure-based coarse-grained Gō-like models have been used extensively in deciphering protein folding mechanisms because of their simplicity and tractability. Meanwhile, explicit-solvent molecular dynamics (MD) simulations with physics-based all-atom force fields have been applied successfully to simulate folding/unfolding transitions for several small, fast-folding proteins. To explore the d...

متن کامل

Molecular Dynamics Simulations of Freezing Behavior of Pure Water and 14% Water-NaCl Mixture Using the Coarse-Grained Model

 We performed molecular dynamics simulations using the coarse-grained model to study the freezing behavior of pure water and 14% water-salt mixture in a wide range of temperatures for a very long time around 50 nanoseconds. For the salty water, an interface in nanoscale was used. For both systems, the f...

متن کامل

Probing the folded state and mechanical unfolding pathways of T4 lysozyme using all-atom and coarse-grained molecular simulation.

The Bacteriophage T4 Lysozyme (T4L) is a prototype modular protein comprised of an N-terminal and a C-domain domain, which was extensively studied to understand the folding/unfolding mechanism of modular proteins. To offer detailed structural and dynamic insights to the folded-state stability and the mechanical unfolding behaviors of T4L, we have performed extensive equilibrium and steered mole...

متن کامل

Prediction of protein structure by simulating coarse-grained folding pathways: a preliminary report.

A set of software tools designed to study protein structure and kinetics has been developed. The core of these tools is a program called Folding Machine (FM) which is able to generate low resolution folding pathways using modest computational resources. The FM is based on a coarse-grained kinetic ab initio Monte-Carlo sampler that can optionally use information extracted from secondary structur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 130 20  شماره 

صفحات  -

تاریخ انتشار 2009